The action of a group G on the coset space of a subgroup gives us a transitive permutation representation of the group. Whenever the subgroup is core-free, we have that the action of G on the coset space of the subgroup will be faithful. Moreover, the stabilizer of a point on a faithful transitive permutation representation of G will always be a core-free subgroup.
‣ FaithfulTransitivePermutationRepresentations ( G[, all_ftpr] ) | ( operation ) |
Returns: a list
For a finite group G, FaithfulTransitivePermutationRepresentations returns a list of a faithful transitive permutation representation of G for each degree. If all_ftpr is true, then it will return a list of all faithful transitive permutation representations, up to conjugacy equivalence.
gap> sp := SymplecticGroup(4,2);; gap> CoreFreeDegrees(sp); [ 6, 10, 12, 15, 20, 30, 36, 40, 45, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720 ] gap> ftprs := FaithfulTransitivePermutationRepresentations(sp);; gap> Size(ftprs); 19 gap> all_ftprs := FaithfulTransitivePermutationRepresentations(sp,true);; gap> Size(all_ftprs); 54
To complement the already existing functions in GAP MinimalFaithfulPermutationDegree and MinimalFaithfulPermutationRepresentation, the following functions to retrieve the MinimalFaithfulTransitivePermutationRepresentation and MinimalFaithfulTransitivePermutationDegree.
‣ MinimalFaithfulTransitivePermutationRepresentation ( G[, all_minimal_ftpr] ) | ( operation ) |
Returns: an isomorphism (or a list of isomorphisms)
For a finite group G, MinimalFaithfulTransitivePermutationRepresentation returns an isomorphism of G into the symmetric group of minimal degree acting transitively on its domain. If all_minimal_ftpr is set as true, then it returns a list of all isomorphisms G into the symmetric group of minimal degree.
gap> sp := SymplecticGroup(4,2);; gap> min_ftpr := MinimalFaithfulTransitivePermutationRepresentation(sp); CompositionMapping( <action epimorphism>, <action isomorphism> ) gap> min_ftprs := MinimalFaithfulTransitivePermutationRepresentation(sp,true); [ CompositionMapping( <action epimorphism>, <action isomorphism> ), CompositionMapping( <action epimorphism>, <action isomorphism> ) ]
‣ MinimalFaithfulTransitivePermutationDegree ( G ) | ( function ) |
Returns: an integer
For a finite group G, MinimalFaithfulTransitivePermutationDegree returns the least positive integer n such that G is isomorphic to a subgroup of the symmetric group of degree n acting transitively on its domain.
gap> sp := SymplecticGroup(4,2);; g:=SimpleGroup("PSL",3,5);; gap> MinimalFaithfulTransitivePermutationDegree(sp); 6 gap> MinimalFaithfulTransitivePermutationDegree(g); 31
To obtain a faithful transitive permutation Representation of a specific degree, the following function FaithfulTransitivePermutationRepresentationsOfDegree can be used.
‣ FaithfulTransitivePermutationRepresentationsOfDegree ( G, d[, all_ftpr_of_given_degree] ) | ( operation ) |
Returns: an isomorphism (or a list of isomorphisms)
For a finite group G, FaithfulTransitivePermutationRepresentationsOfDegree returns one isomorphism of G into the symmetric group of degree d acting transitively on its domain. If all_ftpr_of_given_degree is set as true, then it returns a list of all isomorphisms G into the symmetric group of degree d, up to conjugacy equivalence.
gap> sp := SymplecticGroup(4,2);; gap> FaithfulTransitivePermutationRepresentationsOfDegree(sp,10); CompositionMapping( <action epimorphism>, <action isomorphism> ) gap> FaithfulTransitivePermutationRepresentationsOfDegree(sp,20, true); [ CompositionMapping( <action epimorphism>, <action isomorphism> ), CompositionMapping( <action epimorphism>, <action isomorphism> ), CompositionMapping( <action epimorphism>, <action isomorphism> ) ]
generated by GAPDoc2HTML