Goto Chapter: Top 1 2 3 4 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

2 Obtaining Core-Free Subgroups
 2.1 Core-Free Subgroups
 2.2 Degrees of Core-Free subgroups

2 Obtaining Core-Free Subgroups

2.1 Core-Free Subgroups

A core-free subgroup is a subgroup in which its (normal) core is trivial.

2.1-1 IsCoreFree
‣ IsCoreFree( G, H )( function )

Returns: a boolean

Given a group G and one of its subgroups H, it returns whether H is core-free in G.

gap> G := SymmetricGroup(4);; H := Subgroup(G, [(1,3)(2,4)]);;
gap> Core(G,H);
Group(())
gap> IsCoreFree(G,H);
true
gap> H := Subgroup(G, [(1,4)(2,3), (1,3)(2,4)]);;
gap> IsCoreFree(G,H);
false
gap> Core(G,H);# H is a normal subgroup of G, hence it does not have a trivial core
Group([ (1,4)(2,3), (1,3)(2,4) ])

2.1-2 CoreFreeConjugacyClassesSubgroups
‣ CoreFreeConjugacyClassesSubgroups( G )( function )

Returns: a list

Returns a list of all conjugacy classes of core-free subgroups of G

gap> G := SymmetricGroup(4);; dh := DihedralGroup(10);;
gap> cfccs := CoreFreeConjugacyClassesSubgroups(G);; Size(cfccs);
7
gap> cfccs_dh := CoreFreeConjugacyClassesSubgroups(dh);; Size(cfccs_dh);
2

2.1-3 AllCoreFreeSubgroups
‣ AllCoreFreeSubgroups( G )( function )

Returns: a list

Returns a list of all core-free subgroups of G

gap> G := SymmetricGroup(4);; dh := DihedralGroup(10);;
gap> acfs := AllCoreFreeSubgroups(G);; Size(acfs);
24
gap> acfs_dh := AllCoreFreeSubgroups(dh);; Size(acfs_dh);
6

2.2 Degrees of Core-Free subgroups

2.2-1 CoreFreeDegrees
‣ CoreFreeDegrees( G )( function )

Returns: a list

Returns a list of all possible degrees of faithful transitive permutation representations of G. The degrees of a faithful transitive permutation representation of G are the index of its core-free subgroups.

gap> G := SymmetricGroup(4);; dh := DihedralGroup(10);;
gap> CoreFreeDegrees(G);
[ 4, 6, 8, 12, 24 ]
gap> CoreFreeDegrees(dh);
[ 5, 10 ]
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Bib Ind

generated by GAPDoc2HTML